SEMESTER

IV

QP CODE

23MAT41

P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA SEM END EXAMINATIONS APRIL -2025

II B.SC: MATHS:RING THEORY
TIME: 2 HRS

r			TALL STATES			100 /	7 E 60-30 RO MANY
DATE&SE	07.04.2025 &	REG	175		20	MAX	
SSION	AN	NO	2 8	2 Mx 7	29	MARKS	50

SECTION-I

Answer any THREE of the following questions. And attempt one question from Each section part Each question carries TEN marks

3X10=30Marks

PART-A

- Prove that $Q(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in Q\}$ is a field with respect to ordinary addition and multiplication of numbers
- 2. If U_1, U_2 are two ideals of a ring R then $U_1 \cup U_2$ is an ideal of R if and only if one is containing to the other one
- 3. If U is an ideal of a ring R then prove that the set $\frac{R}{U} = \{x + U \mid x \in R\}$ is a ring with respect to the induced operations of addition (+) and multiplication (.) of cosets defined by

$$(a + U) + (b + U) = (a + b) + U$$
 and $(a + U) \cdot (b + U) = ab + U$ for $a + U, b + U \in \frac{R}{U}$

PART-B

- 4- State and prove fundamental theorem of homomorphism
- 5 If M is a maximal ideal of the ring of integers Z then show that M is generated by prime integers
- 6. If F is a field then prove that F(x) is a principal ideal domain

SECTION-II

Answer any FOUR of the following questions. Each question carries FIVE marks
4 X 5=20Marks

- 7. Show that a field has no zero divisors
- 8. Show that the ideals of a field F are only $\{0\}$ and F itself
- 9. The intersection of two ideals of a ring R is an ideal of R
- 10. If U is an ideal of the ring R and a, $b \in R$ then prove that $a + U = b + U \iff a b \in U$
- 11. Prove that every homomorphic image of a ring is a ring
- 12. Prove that $f(x) = 25x^5 9x^4 + 3x^2 12 \in Z[x]$ is irreducible over Q
- 13 State and prove the Remainder theorem